Code Execution
The code_execution tool enables orchestrating multiple upstream MCP tools in a single request using sandboxed JavaScript (ES5.1+).
Overview
Code execution allows AI agents to:
- Chain multiple tool calls together
- Process and transform tool outputs
- Implement complex logic and conditionals
- Reduce round-trip latency
Configuration
Enable code execution in your config:
{
"enable_code_execution": true,
"code_execution_timeout_ms": 120000,
"code_execution_max_tool_calls": 0,
"code_execution_pool_size": 10
}
| Option | Type | Default | Description |
|---|---|---|---|
enable_code_execution | boolean | false | Enable the code execution tool |
code_execution_timeout_ms | integer | 120000 | Execution timeout (2 minutes) |
code_execution_max_tool_calls | integer | 0 | Max tool calls (0 = unlimited) |
code_execution_pool_size | integer | 10 | Number of VM instances to pool |
CLI Usage
Basic Execution
mcpproxy code exec --code="({ result: input.value * 2 })" --input='{"value": 21}'
Tool Orchestration
mcpproxy code exec --code="call_tool('github', 'get_user', {username: input.user})" --input='{"user":"octocat"}'
API
Input Schema
{
"code": "string (required) - JavaScript code to execute",
"input": "object (optional) - Input data available as 'input' variable"
}
Built-in Functions
call_tool(server, tool, args)
Execute a tool on an upstream server:
var result = call_tool('github', 'create_issue', {
repo: 'owner/repo',
title: 'Bug report',
body: 'Description'
});
log(message)
Log a message (visible in tool response):
log('Processing started');
Return Value
The last expression in the code is returned as the tool result:
// Return an object
({
success: true,
data: result
})
Examples
Simple Calculation
// input: { "a": 5, "b": 3 }
({ sum: input.a + input.b })
Tool Chaining
// Get user info then create an issue
var user = call_tool('github', 'get_user', { username: input.username });
var issue = call_tool('github', 'create_issue', {
repo: input.repo,
title: 'Issue from ' + user.name,
body: 'Created by code execution'
});
({ user: user, issue: issue })
Conditional Logic
var files = call_tool('filesystem', 'list_directory', { path: input.path });
if (files.length > 100) {
({ status: 'too_many_files', count: files.length });
} else {
var results = [];
for (var i = 0; i < files.length; i++) {
if (files[i].endsWith('.md')) {
results.push(files[i]);
}
}
({ markdown_files: results });
}
Error Handling
try {
var result = call_tool('api', 'fetch_data', { url: input.url });
({ success: true, data: result });
} catch (e) {
({ success: false, error: e.message });
}
Security
Sandbox Environment
- Code runs in isolated JavaScript VM (goja)
- No access to file system
- No access to network (except via call_tool)
- No access to process environment
- Memory limits enforced
Tool Call Security
- Tools inherit quarantine status
- Rate limiting applied
- Response size limits enforced
Troubleshooting
Timeout Errors
Increase the timeout or optimize your code:
{
"code_execution_timeout_ms": 300000
}
Syntax Errors
Use ES5.1 syntax (no arrow functions, let/const, template literals):
// Wrong
const result = () => call_tool('server', 'tool');
// Correct
var result = function() { return call_tool('server', 'tool'); };
Tool Not Found
Verify the server and tool names:
mcpproxy tools list --server=server-name
Best Practices
- Keep code simple: Complex logic is harder to debug
- Handle errors: Use try/catch for tool calls
- Minimize tool calls: Batch operations when possible
- Use logging: Add log() calls for debugging
- Test locally: Use CLI to test before integrating